Sum vs Product
Problem Description
Peter has just learned mathematics. He learned how to add, and how to multiply. The fact that 2 + 2 = 2 × 2 has amazed him greatly. Now he wants find more such examples. Peters calls a collection of numbers beautiful if the product of the numbers in it is equal to their sum.
For example, the collections {2, 2}, {5}, {1, 2, 3} are beautiful, but {2, 3} is not.
Given n, Peter wants to find the number of beautiful collections with n numbers. Help him!
Input
Output
Sample Input
25
Sample Output
13
Hint
Source
Manager
题解及代码:
通过打表前几项我们会发现构成n。比方n=5时。其形式之中的一个是1 1 2 2 2,都是这样的非常多1,然后其它数字组合的形式。那么我们就能够枚举除了1以外的数字的组合,来计算sum[n]。比方数字组合为2 3 4,那么依据公式我们知道2*3*4=24,2+3+4=9,那么我们还须要补上15个1,加上2 3 4 这三个数字,总共是18个数字,那么2 3 4必定属于sum[18]里面的一中情况。得到验证。这样我们就能用dfs来求出全部的情况数了。
以下的代码是dfs的代码,由于怕超时的缘故,题目AC的代码是打表之后交的。
#include#include #include #include using namespace std;typedef long long ll;int sum[510];void init(){ memset(sum,0,sizeof(sum));}void dfs(int nt,int nu,int su,int k){ for(int i=k;i<=500;i++) { if(nu*i>1000) break; sum[nu*i-su-i+nt+1]++; //printf("%d %d %d %d %d\n",nu,su,i,nt+1,nu*i-su-i+nt+1); dfs(nt+1,nu*i,su+i,i); }}int main(){ init(); for(int i=2;i<=500;i++) dfs(1,i,i,i); for(int i=2;i<=500;i++) printf("%d,",sum[i]); return 0;}
版权声明:本文博客原创文章。博客,未经同意,不得转载。